Отек головного мозга патофизиология

Отек головного мозга патофизиология thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 марта 2020;
проверки требует 1 правка.

Отёк мозга — патологический процесс, проявляющийся избыточным накоплением жидкости в клетках головного или спинного мозга (в первую очередь глии) и межклеточном пространстве, увеличением объёма мозга и внутричерепной гипертензией.

По патогенезу отёк мозга разделяют на вазогенный, цитотоксический, интерстициальный и фильтрационный. В зависимости от этиологического фактора различают опухолевый, травматический, послеоперационный, токсический, воспалительный, ишемический и гипертензивный отёк головного мозга[2][3].

Этиопатогенез[править | править код]

В литературе не существует единого мнения в отношении термина «отёк мозга». Так, в БМЭ (1981) вовсе отсутствует статья «отёк мозга», а явление описывается в статье «отёк и набухание мозга». Отёк, по терминологии БМЭ, проявляется раздвиганием и сдавливанием отёчной жидкостью клеток, что приводит к нарушению межуточного обмена и транспорта кислорода с последующей дистрофией и клеточной гибелью.[4]. Термин «набухание» определяется как «увеличение объёма клеток или стромы внутренних органов».[5] Чистого отёка или набухания мозга практически не встречается. В современной научной литературе накопление жидкости в клетках мозга вследствие повреждения клеточных мембран и цитоплазмы чаще обозначается как вариант отёка мозга — цитотоксический отёк.

Каждый из существующих видов отёка-набухания мозга имеет различный патогенез.[6][7][8][9][10][11]

Вазогенный отёк[править | править код]

Вазогенный отёк трактуют как зависящий от первичного повышения проницаемости гемато-энцефалического барьера (ГЭБ). В норме ГЭБ не пропускает позитивно заряженные ионы, которые обеспечивают осмотическое давление, и соответственно таким образом влияет на содержание межклеточной воды. При нарушении проницаемости ГЭБ интенсивность транссудации воды и её накопления в ткань мозга будет тем больше, чем выше уровень кровяного давления в капиллярах, и наоборот.

Вазогенный отёк встречается при опухолях головного мозга, холодовой травме (в эксперименте), микроэмболии сосудов мозга, газовой эмболии мозговых сосудов, окклюзии сонных артерий, эклампсии.

Цитотоксический отёк[править | править код]

Термин «цитотоксический отёк» представляет собой «набухание», то есть увеличение внутриклеточной воды. Морфологически набухание мозга характеризуется развитием внутриклеточного отёка тела и отростков астроцитов (особенно прилегающих к кровеносным сосудам). Тела нейронов практически не затрагиваются процессами набухания до момента полной гибели глиальных клеток, их окружающих.

Первичным фактором, вызывающим развитие цитотоксического отёка, является недостаток поступления кислорода и АТФ, что вызывает нарушение работы ионных насосов и избыточное поступление в клетку ионов Na+, что вызывает повышение внутриклеточного осмотического давления и соответственно чрезмерное поступление в клетку воды. Первый удар берут на себя глиальные клетки, в частности клетки астроглии.

Интерстициальный отёк[править | править код]

Выделяется некоторыми авторами, как возникающий при гидроцефалии (увеличенном внутрижелудочковом давлении ликвора), что приводит к пропитыванию субэпендимарной ткани избыточной спинно-мозговой жидкостью.

Клиника[править | править код]

Клинические проявления отёка-набухания мозга одинаковы вне зависимости от его патогенетического типа.

Они состоят из сочетания трёх групп симптомов: обусловленных синдромом внутричерепной гипертензии, очаговых и стволовых симптомов.

Синдром внутричерепной гипертензии возникает вследствие увеличения жидкости в закрытом пространстве полости черепа и проявляется распирающей головной болью, тошнотой, рвотой на высоте боли, снижением уровня сознания.
При длительно существующей внутричерепной гипертензии на рентгенограммах черепа можно отметить усиление пальцевых вдавлений, остеопороз спинки турецкого седла, при исследовании глазного дна — отёк сосков зрительных нервов.

Нахождение отёка в определенных областях мозга приводит к нарушению их работы и, соответственно, выпадению представленных ими функций — очаговой симптоматике.

Также отек одних участков мозга приводит к смещению их относительно других и возникновению дислокационных синдромов, которые сопровождаются сдавлением структур сосудов и ствола мозга. Присоединение стволовой симптоматики в клинике проявляется нарушениями дыхания, кровообращения, угнетением реакции зрачков и является жизнеугрожающим.

Лечение[править | править код]

Тот, кто владеет искусством лечить и предупреждать отёк головного мозга, владеет ключом к жизни и смерти больного! Н. Н. Бурденко

Одной из основных задач при лечении больного с внутричерепной патологией в остром периоде является обеспечение у него нормального уровня церебрального перфузионного давления (ЦПД), так как именно оно определяет достаточность кровоснабжения и поступления питательных веществ к нейрону.

ЦПД определяется по формуле

ЦПД = среднее артериальное давление (САД) — внутричерепное давление (ВЧД) — центральное венозное давление (ЦВД).

Отёк мозга приводит к развитию внутричерепной гипертензии, т. е. повышению ВЧД и соответственно к снижению ЦПД.

Лечение отёка-набухания мозга предусматривает:

  • поддержание оксигенации (рО2 > 70 мм рт. ст.), при необходимости – перевод на ИВЛ;
  • устранение двигательного возбуждения и судорог;
  • предупреждение и устранение болевых и ноцицептивных реакций;
  • устранение причин, нарушающих венозный отток из полости черепа;
  • поддержание нормальной температуры тела;
  • умеренную гипервентиляцию;
  • назначение диуретиков.

При неэффективности консервативного лечения проводится операция — декомпрессионная трепанация черепа путём удаления костного лоскута с целью снижения повышенного вследствие отёка мозга ВЧД.

Читайте также:  Как снять отек голеностопного

Особенности терапии цитотоксического отёка[править | править код]

Для поддержания должного уровня ЦПД при цитотоксическом отёке мозга придерживаются концепции Рознера[12], которая предусматривает поддержание артериальной гипертензии, что включает инфузионную терапию, гиперволемию и назначение вазопрессоров. Данная концепция оказывает положительный эффект при сохранности механизмов ауторегуляции мозгового кровообращения, отсутствии повреждения ГЭБ и при условии, что гипертензия не должна выходить за пределы ауторегуляции у данного больного.

Отмечено, что у больных артериальной гипертензией черепно-мозговая травма протекает относительно легче по сравнению с пострадавшими, имевшими нормальное или пониженное артериальное давление.[13]

Особенностью лечения цитотоксического отёка мозга является назначение маннитола или др. осмодиуретиков. Маннитол повышает осмолярность крови и соответственно по градиенту концентраций выводит избыточную воду из клеток мозга. Назначение маннитола при вазогенном отёке может вызывать феномен отдачи. За счёт проникновения через повреждённый ГЭБ в ткань мозга маннитол значительно повышает внутритканевую осмолярность вызывая увеличение поступления жидкости и нарастание отёка.
Также при цитотоксическом отёке мозга полезное действие оказывает барбитуровый наркоз. Снижая мозговую деятельность, а значит и потребность клеток в АТФ, он оказывает выраженный противоотёчный эффект.

Особенности терапии вазогенного отёка[править | править код]

При вазогенном отёке мозга применяется концепция Лунда[14], которая на первый взгляд является противоположной концепции Рознера. Она предусматривает создание артериальной гипотензии путём назначения вазоконстрикторов и гиповолемии. При вазогенном отёке отмечается нарушение проницаемости ГЭБ, и соответственно перемещение жидкости через мембраны зависит от градиента гидростатических давлений между церебральными капиллярами и интерстицием. Т. е. при более высоком артериальном давлении будет отмечаться большая выраженность отёка мозга. ВЧД при повышении САД будет повышаться быстрее, а следовательно, ЦПД уменьшается.

Особенностями лечения вазогенного отёка мозга также является назначение глюкокортикоидов, которые уменьшают проницаемость ГЭБ и оказывают выраженный лечебный эффект. При цитотоксическом отёке мозга глюкокортикоиды неэффективны.

Примечания[править | править код]

  1. ↑ Monarch Disease Ontology release 2018-06-29sonu — 2018-06-29 — 2018.
  2. ↑ Что вызывает отёк мозга (рус.), Неврология (31 июля 2018). Дата обращения 31 июля 2018.
  3. ↑ Мозг головной: отек мозга (недоступная ссылка). Дата обращения 25 марта 2009. Архивировано 7 марта 2009 года.
  4. ↑ Большая медицинская энциклопедия: [В 30-ти т./ АМН СССР]. Гл. ред. Б. В. Петровский. — 3-е изд. — М.: Советская энциклопедия. — Т. 18. ОСТЕОПАТИЯ — ПЕРЕЛОМЫ. 1981. 528 с. с ил. с. 59-60
  5. ↑ Большая медицинская энциклопедия: [В 30-ти т./ АМН СССР]. Гл. ред. Б. В. Петровский. — 3-е изд. — М.: Советская энциклопедия. — Т. 16. МУЗЕИ — НИЛ. 1981. 513 с. с ил. С. 105
  6. ↑ Бакай Л., Ли Д. Отёк мозга. «Медицина», Москва. 1969
  7. ↑ Квитницкий-Рыжов Ю. Н. Современное учение об отёке и набухании головного мозга. «Здоров’я» Київ. 1988
  8. ↑ Лесницкая В. Л., Морозов В. В., Пашкова В. С., Иванова И. А. Отёк мозга в эксперименте и клинике. Симферополь. 1959
  9. ↑ Мчедлишвили Г. И. Отёк головного мозга. «Мецниереба», Тбилиси. 1986
  10. ↑ Черний В. И., Кардаш А. М., Городник Г. А., В. Г. Дроботько. Диагностика и лечение отёка и набухания головного мозга. — К.: «Здоров’я», 1997. — с. 228
  11. ↑ Youmans neurological surgery / [edited by] H.Richard Winn. — 5th ed. SAUNDERS, Philadelphia. 2004 pp. 165—166
  12. ↑ PowerPoint Presentation
  13. ↑ Педаченко Е.Г. Ушибы головного мозга у больных артериальной гипертензией (нейрохирургическая диагностика и лечение) Автореферат диссертации на соискание учёной степени доктора медицинских наук. Москва. 1983
  14. ↑ Патофизиология мозгового кровообращения — Литература — Medvuz.RU — Образовательный медицинский сервер

[1]

  1. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок :0 не указан текст

Источник

1. Коржевский Д. Э., Сухорукова Е. Г., Кирик О. В., Алексеева О. С. Астроциты субвентрикулярной зоны конечного мозга // Морфология. – 2011. – Т. 139, № 3. – С. 77–79.

2. Badaut J., Fukuda A. M., Jullienne A., Petry K. G. Aquaporin and brain diseases. // Biochim Biophys Acta. – 2014. – Vol. 1840, № 5. – Р. 1554–1565.

3. Brinker T., Stopa E., Morrison J., Klinge P. A new look at cerebrospinal fluid circulation // Fluids Barriers CNS. – 2014. – Vol. 11. – Р. 10

4. Chen H., Luo J., Kintner D. B., Shull G. E., Sun D. Na+-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia // J. Cereb. Blood Flow Metab. – 2005. – Vol. 25, № 1. – Р. 54–66.

5. Chen H., Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia // Neurol Res. – 2005. – Vol. 27, № 3. – Р. 280–286.

6. Ferrazzano P., Shi Y., Manhas N., Wang Y., Hutchinson B., Chen X., Chanana V., Gerdts J., Meyerand M. E., Sun D. Inhibiting the Na+/H+ exchanger reduces reperfusion injury: a small animal MRI study // Front Biosci (Elite Ed). – 2011. – Vol. 3. – Р. 81–88.

Читайте также:  Отек мозга при эпилепсии

7. Hirt L., Price M. Ternon B., Mastour N., Brunet J. F., Badaut J. Early induction of AQP4 contributes the limitation of the edema formation in the brain ischemia // J. Cereb. Blood Flow Metab. – 2009. – Vol. 29. – Р. 423–433.

8. Hladky S. B., Barrand M. A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles // Fluids Barriers CNS. – 2016. – Vol. 13, № 1. – Р. 19.

9. Jessen N. A., Munk A. S., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide // Neurochem res. – 2015. – Vol. 40, № 12. – Р. 2583–2599.

10. Muoio V., Persson P. B., Sendeski M. M. The neurovascular unit – concept review // Acta Physiol (Oxf). – 2014. – Vol. 210, № 4. – Р. 790–798.

11. O’Donnell M. E., Tran L., Lam T. I., Liu X. B., Anderson S. E. Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke // J. Cereb. Blood Flow Metab. – 2004. – Vol. 24, № 9. – 1046–1056.

12. Preston G. M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family // Proc. Natl. Acad. Sci. USA. – 1991. – Vol. 88. – Р. 11110–11114.

13. Rao K. V., Reddy P. V., Curtis K. M., Norenberg M. D. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury // J. Neurotrauma. – 2011. – Vol. 28, № 3. – Р. 371–381.

14. Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences // Fluids. Barriers CNS. – 2011. – Vol. 8, № 1. – Р. 3.

15. Ren Z., Iliff J. J., Yang L., Yang J., Chen X., Chen M. J., Giese R. N., Wang B., Shi X., Nedergaard M. «Hit & Run» model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation // J. Cereb. Blood Flow Metab. – 2013. – Vol. 33. – Р. 834–845.

16. Roales-Buján R., Páez P., Guerra M., Rodríguez S., Vío K., Ho-Plagaro A., García-Bonilla M., Rodríguez-Pérez L. M., Domínguez-Pinos M. D., Rodríguez E. M., Pérez-Fígares J. M., Jiménez A. J. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus // Acta Neuropathol. – 2012. – Vol. 124, № 4. – Р. 531–546.

17. Ross S. B., Fuller C. M., Bubien J. K., Benos D. J. Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells // Am. J. Physiol. Cell Physiol. – 2007. –Vol. 293, № 3. – Р. 1181–1185.

18. Sa-Pereira I., Brites D., Brito M. A. Neurovascular unit: a focus on pericytes // Mol. Neurobiol. – 2012. – Vol. 45. – Р. 327–347.

19. Smith A. J., Jin B.-J., Verkman A. S. Muddying the water in brain edema? // Trends Neurosci. – 2015. – Vol. 38. – Р. 331–332.

20. Stokum J. A., Gerzanich V., Simard J. M. Molecular pathophysiology of cerebral edema // J. Cereb. Blood Flow Metab. – 2016. –Vol. 36, № 33. – Р. 513–538.

21. Stokum J. A., Kurland D. B., Gerzanich V., Simard J. M. Mechanisms of astrocyte-mediated cerebral edema // Neurochem Res. – 2015. –Vol. 40, № 2. –Р. 317–328.

22. Su G., Kintner D. B., Flagella M., Shull G. E., Sun D. Astrocytes from Na+-K+-Cl- cotransporter-null mice exhibit absence of swelling and decrease in EAA release // Am. J. Physiol. Cell Physiol. – 2002. – Vol. 282, № 5. – Р. 1147–1160.

23. Suzuki Y., Matsumoto Y., Ikeda Y., Kondo K., Ohashi N., Umemura K. SM-20220, a Na+/H+ exchanger inhibitor: effects on ischemic brain damage through edema and neutrophil accumulation in a rat middle cerebral artery occlusion model // Brain. Res. – 2002. – Vol. 945, № 2. – Р. 242–248.

24. Syková E., Nicholson C. Diffusion in brain extracellular space // Physiol. Rev. – 2008. – Vol. 88, № 4. – Р. 1277–1340.

Читайте также:  Отек ушей у собак

25. Takagi S., Ehara K., Finn R. D. Water extraction fraction and permeability-surface product after intravenous injection in rats // Stroke. – 1987. – Vol. 18, № 1. – Р. 177–183.

26. Tao-Cheng J. H., Brightman M. W. Development of membrane interactions between brain endothelial cells and astrocytes in vitro // Int. J. Dev. Neurosci. – 1988. – Vol. 6, № 1. – Р. 25–37.

27. Yan Y., Dempsey R. J., Flemmer A., Forbush B., Sun D. Inhibition of Na+-K+-Cl- cotransporter during focal cerebral ischemia decreases edema and neuronal damage // Brain Res. – 2003. – Vol. 961, № 1. – Р. 22–31.

Источник

Оглавление темы «Отек мозга. Первая помощь при отеке головного мозга. Миастения ( miastenia gravis pseudoparalitica ). Миастенический криз. Первая помощь при миастеническом кризе.»:

1. Отек мозга. Определение отека мозга. Причины ( этиология ) отека мозга. Патогенез отека мозга.

2. Клинические проявления отека головного мозга. Признаки отека мозга. Клиника отека мозга. Общемозговой синдром.

3. Синдром диффузного рострокаудального нарастания неврологических симптомов при отеке мозга. Дыхание Биота. Синдром дислокации мозговых структур.

4. Диагностика отека головного мозга. Принципы лечения отека мозга.

5. Неотложная помощь при отеке мозга. Первая помощь при отеке головного мозга.

6. Лечение при отеке мозга. Лечение отека головного мозга в стационаре.

7. Миастения ( miastenia gravis pseudoparalitica ). Миастенический криз. Причины ( этиология ) миастении. Патогенез миастении.

8. Клиника ( признаки ) миастенического криза. Клиника ( признаки ) миастении. Диагностика миастении. Диагностика миастенического криза.

9. Неотложная помощь при миастеническом кризе. Первая помощь при миастеническом кризе.

Отек мозга. Определение отека мозга. Причины ( этиология ) отека мозга. Патогенез отека мозга.

Отеком мозга называется увеличение его объема вследствие накопления жидкости в межклеточном пространстве. Увеличение объема мозга за счет интрацеллюлярной жидкости называется набуханием. С точки зрения патофизиологии, данные состояния (отек и набухание) нередко могут развиваться одновременно и взаимно переходить друг в друга, поэтому с клинической точки зрения вполне допустимо оба эти понятия толковать как отек мозга.

Отек мозга относится к вторичным симптомам поражения. Он может быть местным (локальным, перифокальным) или генерализованным (диффузным).

Этиология отека мозга. Отек мозга возникает при многих заболеваниях, поражающих нервную систему: черепно-мозговая травма; инсульт; опухоли и абсцесс головного мозга; энцефалиты и менингиты; при гипоксии; при различных формах окклюзионной гидроцефалии; различных синдромах нарушения осмотического равновесия; общих интоксикациях; инфекциях; ожогах тела; злокачественной гипертонической болезни и др. В эксперименте и клинике доказано, что различные этиологические факторы вызывают патогенетически разные формы отека мозга, но механизмы его нарастания идентичны.

Стадии отека мозга

Патогенез отека мозга. Различают четыре типа отека мозга: вазогенный, цитотоксический, осмотический, гидростатический (А. Н. Коновалов, Б. А. Кодашев).

1. Вазогенный отек мозга связан с повышенной проницаемостью капилляров, вследствие чего жидкость из сосудов частично переходит в интерстициальное пространство (в толщу белого вещества), вызывая увеличение его объема. Вазогенные отеки обычно бывают перифокальными. Наиболее часто они наблюдаются при ЧМТ, опухолях мозга, инфекционно-аллергических поражениях ЦНС, геморрагических инсультах и др. (А. Н. Коновалов, Б. А. Кодашев, 1995).

2. Цитотоксический отек мозга возникает при токсическом (экзо- или эндогенном) воздействии на клетки головного мозга, в результате чего нарушается нормальный клеточный метаболизм и изменяется проницаемость клеточных мембран. Данный вид отека встречается при различных отравлениях и при ишемии мозга на фоне ишемического инсульта (А. Н. Коновалов, Б. А. Кодашев, 1995). Цитотоксический отек мозга обратим в течение 6—8 ч прежде всего за счет реактивации ионного насоса, которая может быть достигнута при восстановлении кровотока. Если это не происходит, отек приобретает вазогенный характер (Б. С. Виленский, 1986).

3. Осмотический отек развивается при нарушении существующего в норме небольшого осмотического градиента между осмо-лярностью ткани мозга (она выше) и осмолярностью плазмы. Данный вид развивается вследствие водной интоксикации ЦНС за счет гиперосмолярности мозговой ткани. Этот вид отека наблюдается при метаболических энцефалопатиях (почечная и печеночная недостаточность, гипергликемия и др.) (А. Н. Коновалов, Б. А. Кодашев, 1995).

4. Гидростатический отек обычно формируется при быстром повышении вентрикулярного давления. Накопление жидкости происходит в перивентрикулярной зоне, что четко выявляется при компьютерной томографии (А. Н. Коновалов, Б. А. Кодашев, 1995).

Учебное видео — анатомии ликворной системы и желудочков головного мозга

Скачать данное видео и просмотреть с другого видеохостинга можно на странице: Здесь.

— Также рекомендуем «Клинические проявления отека головного мозга. Признаки отека мозга. Клиника отека мозга. Общемозговой синдром.»

Источник