Механизмы развития отека при воспалении

Механизмы развития отека при воспалении thumbnail

В результате усиленного выхода жидкой части крови из сосуда в ткань — экссудации развивается воспалительный отек. Его развитие зависит от ряда причин, в том числе от:

а) по­вышения проницаемости микрососудов;

б) увеличения кровяного (фильтрационного) давления в

посткапиллярных венулах;

в) по­вышения осмотического давления в околососудистых

тканях.

Главная причина воспалительного отека — повышение про­ницаемости микрососудов. В связи с этим в отечной жидкости при воспалении скапливается намного больше белка и других макромолекул. Проницаемость сосудов для жидкой части крови и ее клеточных элементов прежде всего зависит от свойств эндо­телия капилляров. Большинство капилляров имеет непрерывный тип строения. Это — капилляры скелетных мышц, сердца, лег­ких. Эндотелий капилляров других органов имеет фенестры (оконца), затянутые тонкой диафрагмой. Такие фенестры обна­ружены в микрососудах эндокринных желез, ворсинок тонкого кишечника, языка, и пр. Наконец, существуют капилляры в виде синусоидов в печени, селезенке. Они имеют широкие межэндоте­лиальные щели и множество фенестр, размеры которых могут быстро меняться в зависимости от давления в сосуде. При рос­те давления отверстия сливаются друг с другом, и жидкость начинает быстрее фильтроваться из сосуда в ткань.

Вещества плазмы могут проникать через стенку микрососу­дов разными путями:

— Вода, электролиты, глюкоза и другие простые соединения с малой массой проникают путем диффузии.

— Белки и другие макромолекулы проходят более сложным путем. Он получил название микровезикулярного транспорта и заключа­ется в том, что от наружной мембраны вначале отпочковывается пузырек диаметром 45-70 нм. В таких везикулах или пузырьках, или микропиноцитозных вакуолях содержатся плазменные белки. Пузырек погружается в цитоплазму эндотелиоцита и проходит от одного полюса клетки к другому, разгружаясь у базальной мембраны. Таким образом, эндотелиальные клетки могут активно захватывать в акте пиноцитоза нужные им макромолекулы из плазмы крови и передавать их в околососудистые ткани. Это явление называется цитопемсисом (от греч. pemsis — проведе­ние).

— Наконец вещества плазмы могут проникать в ткань через щели между эндотелиоцитами или фенестры. Размеры щелей зави­сят от того, в каком состоянии находятся клетки эндотелия. Если они сокращаются, то щели обнажаются и, наоборот, расс­лабление эндотелиоцитов ведет к перекрытию щелей. Это было четко продемонстрировано в опытах, где эндотелий культивиро­вали in vitro: под действием лейкотриенов С4 и Д4, -О2, брадикинина, гистамина, добавленных в инкубационную среду, эн­дотелий капилляров и посткапиллярных венул быстро округлялся и между клетками открывались щели.

Фильтрация и транспорт компонентов плазмы протекает через эндоте­лий капилляров. Благодаря этим процессам обеспечи­вается нормальный обмен веществ между кровью и тканями. В то же время в ходе воспаления жидкая часть крови начинает намного быстрее и в большем объеме покидать сосуды и устрем­ляться в зону повреждения. Воспалительный отек имеет опреде­ленное защитное значение. Белки отечной жидкости связывают токсины, задерживают их всасывание в кровь и распространение по всему организму.

Рассасывание отечной жидкости зависит от дренирующей функции лимфатической системы. При воспалении она, как пра­вило, страдает в большей или меньшей степени из-за закупорки лимфатических капилляров фибриновыми сгустками или их сдавления снаружи отечной жидкостью (экссудатом).

Источник

В
механизме воспалительного отека важную
роль играет увеличение проницаемости
кровеносных капилляров под влиянием
гистамина, брадикинина и других
биологически активных веществ.строение
капилляров как в норме, так и при
воспалении неоднородно. Различают по
крайней мере три типа структуры капилляров
и мелких вен:

Сплошной
тип—эндотелий выстилает сосуд без
перерывов, клетки плотно без щелей
прилегают друг к другу, под эндотелием
находится сплошная базальная мембрана.
С наружной стороны мембраны располагаются
перициты.

«Висцеральный
тип» — между эндотелиальными клетками
имеются «поры», проникающие и через
базальную мембрану, или «фенестры» —
поры, затянутые базальной мембраной,
которая остается целой.

Синусоидный
тип — капилляры имеют широкие щели
между собой, базальная мембрана во
многих местах отсутствует (Чернух А.
М., 1976).

В
ходе развития воспаления гистамин и
другие медиаторы вызывают сокращение
актомиозиновых нитей эндотелиальных
клеток, сокращение этих клеток раздвигает
межэндотелиальные щели, вызывает
образование фенестров и пор. Другие
медиаторы (кинины, брадикинин) вызывают
образование в эндотелиальных клетках
пузырьков (везикул) различной величины,
а также отека под эндотелием, способствующего
образованию щелей и пор. Все эти процессы
участвуют также в активации процессов
экссудации при воспалении. Важно
подчеркнуть, что процесс образования
везикул, вероятно, энергозависимый
процесс, в механизме которого важную
роль играют системы аденилциклазы,
гуанилциклазы, холинэстеразы и других
ферментов клеточных мембран.

Большую
роль в механизме воспалительного отека
играет затруднение оттока крови и лимфы
из очага воспаленной ткани. Задержка
оттока крови и лимфы вызывает выход
плазмы крови и лимфы в ткань и развитие
отека.

8. Медиаторы воспаления, классификация, их источники и роль в формировании воспаления.

Медиаторам
воспаления
принадлежит особо значимая роль в
развитии многообразных процессов в
очаге воспаления (характере и выраженности
вторичной альтерации, сосудистых
реакций, экссудации, эмиграции лейкоцитов,
фагоцитоза, расстройств метаболических
процессов, взаимодействия между собой
клеток и субклеточных структур,
пролиферации, репаративной регенерации
и др.). К медиаторам воспаления относят
различные по химическому строению,
интенсивности, длительности действия
и месту образования ФАВ. Эти ФАВ опосредуют
многообразное действие на организм как
самих флогогенных факторов, так и
патогенетических факторов, формирующихся
в динамике воспаления.
Следует
отметить, что все медиаторы бывают
синтезированы в тех или иных клетках.

Причём
одни (клеточные) медиаторы
образуются и выделяются в очаг воспаления
в функционально активном состоянии
(гистамин, серотонин, ацетилхолин,
норадреналин, простагландины Е и I,
тромбоксан В2, лейкотриены, продукты
ПОЛ и др.).

Другие
медиаторы
— в функционально неактивном состоянии,
в виде предшественников, которые под
влиянием соответствующих промоторов
в гуморальных средах (преимущественно
в плазме) становятся физиологически
активными и затем уже поступают в очаг
воспаления или какие-либо другие
структуры организма (кинины, компоненты
системы комплемента, факторы системы
гемостаза).

Третьи
образуются в лейкоцитах
(гранулоцитах, моноцитах, лимфоцитах):
как циркулирующих в крови, так и усиленно
мигрирующих в очаг повреждения
клеточ-но-тканевых структур [интерлейкины
(ИЛ), интерфероны (ИФ), хемо- и лейкокины,
гидролазы, катионные белки, кейлоны,
фибронектин, оксид озота и др.].

По
месту приобретения
физиологически активного состояния
медиаторы воспаления делят на три
группы:
— клеточные (локальные,
образующиеся в месте повреждения);

плазменные;
— лейкоцитарные
(промежуточные).

Читайте также:  Отек влагалища слизистые выделения

Клеточные
медиаторы

воспаления преимущественно образуются
следующими клетками:
— лаброцитами
(например, тучные клетки, тканевые
базофилы, мастоциты);
— тромбоцитами;

— клетками соединительной ткани;

клетками эпителиальной ткани;

клетками нервной ткани.

К
клеточным
медиаторам воспаления

относят следующие:
— биогенные амины
(гистамин, серотонин);
— нейромедиаторы
(норадреналин, ацетилхолин);

простагландины (А, В, С, Д, Е, F, I), главным
образом Е2 и Ib2;
— продукты
свободнорадикального перекисного
окисления липидов мембран клеток
(перекиси, гидроперекиси, альдегиды,
активные формы кислорода и др.);

нуклеотиды (АТФ, ц АМФ, ц ГМФ и др.);

нуклеозиды (аденозин и др.);


кейлоны и антикейлоны;
— гидролазы
повреждённых клеточно-тканевых структур;

— оксид азота эндотелиоцитов и др.

К
плазменным медиаторам воспаления

относят следующие:
— кинины (брадикинин,
каллидин);
— компоненты системы
комплемента;
— факторы системы гемостаза
(участвующие в изменении активности
свёртывающей, противосвёртывающей и
фибринолитической систем крови).

К
промежуточным медиаторам воспаления

относят цитокины (ранее именуемые
монокинами и лимфокинами):
— интерлейкины:
ИЛ-1а, ИЛ-1(3, ИЛ-2, ИЛ-4,
— интерфероны:
ИФ-а, ИФ-(3, ИФ-у;
— лейкокины (лизосомальные
гидролазы, катионные белки, белки острой
фазы воспаления, фибронектин и др.);

митогенные факторы — факторы, стимулирующие
деление клеток;
— факторы роста —
факторы, стимулирующие рост клеток и
тканей;
— факторы некроза опухолей
(особенно ФНОа);
— колониестимулирующие
факторы — факторы, активирующие КОЕ
белого, красного и тромбоцитарного
ростков костного мозга;
— бактерицидные,
цитолитические

  1. Роль
    лейкоцитов при воспалении. Фагоцитоз,
    этапы. Кислородзависимые и
    кислороднезависимые механизмы киллинга

Эмиграция
лейкоцитов начинается в стадии
артериальной гиперемии и достигает
максимума в стадии венозной гиперемии.

Могут
быть 3 периода эмиграции лейкоцитов:


краевое стояние лейкоцитов у поверхности
эндотелия капилляров;


выход лейкоцитов через эндотелиальную
стенку;


движение лейкоцитов в воспалительной
ткани.

Роль
нейтрофилов в очаге воспаления:

1.
Появляются в очаге воспаления через 10
мин. после начала реакции воспаления.

2.
Количество нейтрофилов достигает
максимума через 4 — 6 час. после начала
воспалительной реакции.

3.
Фагоцитоз бактерии, продуктов распада,
чужеродных частиц.

4.
Поставка ферментов, катионных белков,
активных форм кислорода.

5.
Разрушение нейтрофилов — их остатки
есть стимул для поступления и активности
моноцитов.

Роль
моноцитов в очаге воспаления:

1.
Появляются в очаге воспаления через 16
— 24 час. после начала реакции воспаления.

2.
Количество моноцитов достигает максимума
через 72 час после начала.

3.
Постепенно трансформируются в макрофаги:


увеличивается объём цитоплазмы и
органелл;


увеличивается количество митохондрий
и лизосом;


образуются фаголизосомы;


образуется медиаторы воспаления


в результате активируется фагоцитоз!

Лейкоциты
от наружной стенки сосуда движутся к
центру очага воспаления. Направление
движения лейкоцитов в воспалённую ткань
называется положительным хемотаксисом.
В очаг воспаления лейкоциты привлекаются
специальными веществами. Эти вещества
называются хемотоксинами.
Они бывают 2-х групп:

1.
Цитотоксины — привлекают лейкоциты
непосредственно.

2.
Цитотоксигены — способствуют образованию
цитотоксинов.

Механизм
хемотаксиса:

1.
Сокращение актомиозиновых нитей
псевдоподий лейкоцитов.

2.
Участие ионов Са++
и Мg++.

3.
Увеличение поглощения О2.

4.
Лейкоциты идут вслед за токами жидкости
экссудата.

Сначала
в очаг воспаления выходят нейтрофилы,
затем — моноциты. Это закон
эмиграции лейкоцитов Мечникова.

Причина:

1.
Нейтрофилы более чувствительны к влиянию
хемотоксинов.

2.
Иной механизм эмиграции у моноцитов:
моноцит внедряется в тело эндотелиальной
клетки в виде большой вакуоли, проходит
через её тело и выходит наружу. А не
через межклеточные щели.

Фагоцитоз

Эмигрировавшие
в зону воспаления нейтрофилы являются
активными фагоцитами, которые очищают
зону воспаления от инфекционных
возбудителей. Адгезия нейтрофилов к
объекту фагоцитоза ускоряется благодаря
опсонинам — активным белковым молекулам,
прикрепляющимся к объекту и облегчающим
распознавание объекта фагоцитирующими
клетками. Одновременно с процессами
направленного движения лейкоцитов и
фагоцитозом в них происходит респираторный
взрыв — резкое увеличение потребления
кислорода для образования бактерицидных
свободных кислородных радикалов
(синглетный кислород, гидроксильный
радикал, перекись водорода, супероксидный
анион). Образование активных форм
кислорода происходит с участием ферментов
миелопероксидазы, супероксиддисмутазы
и каталазы. Освобождающиеся в очаге
воспаления активные формы кислорода
являются высокотоксичными факторами
для бактерий, грибов, микоплазм, вирусов,
хламидий и других возбудителей, они
нарушают структуру и функции мембран
микробных клеток, ограничивают их
жизнедеятельность или вызывают гибель
микроорганизмов. Помимо антимикробной
активности, усиление свободнорадикальных
процессов вызывает повреждение интактных
паренхиматозных клеток, эндотелиальных
клеток сосудов и элементов соединительной
ткани в очаге воспаления, что способствует
дальнейшей альтерации ткани.Кроме вновь
синтезирующихся факторов оксидантной
системы, в гранулах нейтрофилов содержатся
лизоцим, лактоферрин, катионные белки,
щелочная и кислая фосфатазы, рибонуклеаза,
дезоксирибонуклеаза, гиалуронидаза,
b-глюкуронидаза, эластаза, коллагеназа,
ФАТ, кинины, лейкоцитарный пироген,
хемотаксические факторы.

Таким
образом, накопление нейтрофилов в очаге
воспаления и освобождение ими указанных
биологически активных веществ вызывают
гибель или ограничение жизнедеятельности
микроорганизмов, разрушение и лизис
омертвевших тканей, очищение зоны
поврежденияФагоцитозом
называется процесс поглощения и
переваривания микробов и животных
клеток различными соединительнотканными
клетками – фагоцитами. Этапы: Приближения
фагоцита к микробной клетке, которое
возможно благодаря хемотаксису —
движению по химическому следу.

Прилипания
фагоцита к объекту поглощения. Возможно
это благодаря наличию на поверхности
фагоцита специфичных рецептором к
определенному объекту, то есть своеобразных
химических замочков, с помощью которых
микроорганизм или его часть «пристегиваются»
к фагоциту.

После
прилипания объекта мембрана фагоцита
должна подготовиться к его поглощению,
происходит это под воздействием фермента
С-протеинкиназы.

После
того как мембрана фагоцита приходит в
готовность, наступает погружение объекта
в цитоплазму.

При
погружении соприкасающаяся с объектом
часть мембраны фагоцита вгибается
вовнутрь клетки, постепенно обвалакивая
объект, в результате чего вокруг объекта
образуется оболочка из мембраны фагоцита.
Окруженный оболочкой объект называется
фагосомой.

Образовавшаяся
фагосома сливается с лизосомами, которые
представляют собой микроскопические
пузырьки содержащие множество ферментов
расщепляющих белки, жиры и углеводы. В
результате такого слияния происходит

Расщепление
объекта.

Завершается
фагоцитоз выбросом переваренных остатков
объекта, которые уже не принесут организму
никакого вреда.

В
качестве объекта фагоцитоза могут
выступать бактерии, вирусы, грибки, и
другие частицы, которые не являются
генетически родственными организму.

Когда
фагоцит поглощает бактерию (или любой
другой чужеродный материал), увеличивается
потребление кислорода, что называют
респираторным
взрывом.
При этом образуются реактивные
кислород-содержащие молекулы, которые
обладают противомикробным
действием. Соединения
кислорода токсичны как для патогена,
так и для самой клетки, поэтому они
хранятся в ячейках внутри самой клетки.
Такой метод уничтожения проникающих
микроорганизмов называют кислород-зависимое
внутриклеточное уничтожение,
 

Читайте также:  Клюквенный компот от отеков

Фагоциты
также могут уничтожать микроорганизмы
кислород-независимым
методом
,
но он менее эффективен, чем кислород-зависимый.
Различают 4 основных типа. При первом
типе используются электрически заряженные
белки, которые повреждают клеточную
мембрану бактерий.
При втором типе используются лизозимы;
эти ферменты разрушают клеточную
стенку бактерий.
При третьем типе используются лактоферрины,
которые присутствуют в гранулах
нейтрофилов и удаляют необходимое
железо из бактерий.[27] При
четвёртом типе используются протеазы и гидролазы для
переваривания белков разрушенных
бактерий.

Соседние файлы в предмете Патологическая физиология

  • #
  • #
  • #
  • #

Источник

Содержание

1.Отёки определение……………………………………………………….3

1.1. Виды отёков…………………………………………………………….3

1.2.Кассификация отёков…………………………………………………..4

2.Механизмы проявления отёков………………………………………….6

3.Заключение……………………………………………………………….10

4.Список используемой литературы…………………………………..…11

1. Отёком называется патологическое скопление жидкости в тканях и межтканевыхпространствах вследствие нарушения обмена воды между кровью и тканями. Отёк — типовой патологический процесс, встречающийся при многих заболеваниях, одна из наиболее частых форм гипергидратации.

1.1. Виды отёчной жидкости

Отёчная жидкость может иметь различный состав и консистенцию. Она может быть в виде:

* Транссудата — бедной белком (менее 2%) жидкости.

* Экссудата — богатой белком (более3%, иногда до 7—8%) жидкости, часто содержащей форменные элементы крови.

* Слизи, представляющей собой смесь из воды и коллоидов межуточной ткани, содержащих гиалуроновую и хондроитинсерную кислоты. Этот вид отёка называют слизистым, или микседемой. Микседема развивается при дефиците в организме йодсодержащих гормонов щитовидной железы.

1.2. Классификация отёков:

1. по распространенности:

· местный (локальный);

· общий (генерализованный);

2. по скорости развития:

· молниеносные (развиваются в течение нескольких секунд, например, после укуса насекомых, змей),

· острые (развиваются в течение часа, например, при острой сердечной недостаточности отек легких),

· хронические (в течение нескольких суток, недель, например, при голодании);

3. по патогенезу:

· гидростатические (застойные), обусловленные нарушением крово– и лимфооттока и повышением гидростатического давления в микрососудах;

· онкотические — вследствие уменьшения величины коллоидно-осмотического давления плазмы крови

· мембраногенные– при повышении проницаемости капиллярной стенки,

· лимфатические (лимфогенные),возникающие при застое лимфы

· осмотические,связанные с активной задержкой в тканях электролитов, преимущественно натрия, и воды;

4. по этиологии:

· сердечные,

· почечные (нефротические и нефритические),

· печеночные,

· токсические,

· нейрогенные,

· аллергические,

· воспалительные,

· кахектические,

· голодные.

5. по локализации:

· анасарка (в подкожной жировой клетчатке);

· водянка (в серозных полостях);

· гидроперикард(накопление отечной жидкости в сердечной сорочке);

· гидроторакс (в плевральной полости);

· асцит(в брюшной полости);

· гидроцеле (в полости влагалищной оболочки яичка);

· гидроцефалия (в желудочках мозга).

6.в зависимости от ведущей причины развития местные отёки можно подразделить на:

· воспалительные;

· гемодинамические;

· лимфодинамические.

В основе патогенеза любого местного отёка лежит нарушение равновесия Старлинга, которое сводится к возрастанию внутрисосудистого гидростатического давления, снижению онкотического градиента, повышению проницаемости сосудистых стенок, либо комбинации этих механизмов.

Так, воспалительный отек связан с развитием в очаге воспаления экссудации, т. е. выхода жидкой части крови из сосудистого русла в очаг воспаления.

Экссудация обусловлена:

1) повышением проницаемости сосудистой стенки под влиянием избыточных концентраций вазоактивных соединений, лизосомальных ферментов, ионов водорода, накапливающихся в зоне альтерации;

2) возрастанием гидростатического давления в сосудах микроциркуляторного русла и увеличением площади фильтрации жидкой части крови в условиях венозного застоя, снижением внутрисосудистого онкотического давления при одновременном повышении онкотического давления в тканях;

3) увеличением коллоидно-осмотического давления в тканях и увеличением гидрофильности тканей;

4) активацией процесса цитопемсиса эндотелием сосудов, т. е. захватом эндотелиальными клетками мельчайших капелек плазмы и переносом их за пределы сосуда в воспаленную ткань.

Лимфодинамический отек возникает при первичном нарушении лимфооттока, что наблюдается при врожденном дефекте развития лимфатических сосудов, удалении регионарных лимфоузлов, при закупорке, формировании лимфоэктазий и воспалительном поражении лимфатических узлов.

Механизмы проявления отёков

1. Гидростатический (гидродинамический) фактор.При возрастании гидростатического давления в сосудах увеличивается сила фильтрации, а также поверхность сосуда, через которую происходит фильтрация жидкости из сосуда в ткань. Поверхность же, через которую осуществляется обратный ток жидкости, уменьшается. При значительном повышении гидростатического давления в сосудах может возникнуть такое состояние, когда через всю поверхность сосуда осуществляется ток жидкости только в одном направлении — из сосуда в ткань. Происходит накопление и задержка жидкости в тканях.

Возрастание гидростатического давления в сосудах отмечается при:

· повышении венозного давления (из-за застоя крови при сердечной недостаточности)

· при увеличении ОЦК (из-за увеличения выработки АДГ при хронической сердечной недостаточности).

Когда ведущим патогенетическим фактором в развитии отека является повышение гидростатического давления крови, развивается так называемый застойный отек.Этот механизм играет существенную роль при возникновении сердечных отеков (застой крови при сердечной недостаточности), при развитии асцита при циррозе печени (застой крови при портальной гипертензии). По такому механизму развиваются отеки при тромбофлебитах, отеки ног у беременных, т.к. повышается местное венозное давление из-за обтурации или сдавления вен.

2. Онкотический фактор.При уменьшении величины онкотического давления крови возникают отеки, механизм развития которых связан с падением величины эффективной онкотической всасывающей силы. Белки плазмы крови, обладая высокой гидрофильностью, удерживают воду в сосудах и, кроме этого, в силу значительно более высокой концентрации их в крови по сравнению с межтканевой жидкостью стремятся перевести воду из межтканевого пространства в кровь. Помимо этого увеличивается поверхность сосудистой площади, через которую происходит процесс фильтрации жидкости при одновременном уменьшении резорбционной поверхности сосудов.

Таким образом, существенное уменьшение величины онкотического давления крови (не менее чем на 1/3) сопровождается выходом жидкости из сосудов в ткани в таких количествах, которые не успевают транспортироваться обратно в общий кровоток, даже несмотря на компенсаторное усиление лимфообращения. Происходит задержка жидкости в тканях и формирование отека.

Онкотический фактор играет важную роль в происхождении многих видов отеков: почечных (большие потери белка с мочой — протеинурия), печеночных (снижение синтеза белков-альбуминов в печени при ее заболеваниях — гипопротеинемия, уменьшение альбумино-глобулинового коэффициента), голодных, кахектических. По механизму развития отеки, в возникновении которых ведущим является снижение онкотического давления крови, называются онкотическими.

Читайте также:  Влияет ли вес отеков на беременность

3. Проницаемость сосудистой стенки.Увеличение проницаемости сосудистой стенки способствует возникновению и развитию отеков. Такие отеки по механизму развития называются мембраногенными.Однако повышение проницаемости сосудов может привести к усилению процессов как фильтрации в артериальном конце капилляра, так и резорбции в венозном конце. При этом равновесие между фильтрацией и резорбцией воды может и не нарушаться. Поэтому здесь большое значение имеет повышение проницаемости сосудистой стенки для белков плазмы крови, вследствие чего падает эффективная онкотическая всасывающая сила — в первую очередь за счет увеличения онкотического давления тканевой жидкости. Отчетливое повышение проницаемости капиллярной стенки для белков плазмы крови отмечается, например, при остром воспалении —воспалительном отеке.Содержание белков в тканевой жидкости при этом резко нарастает в первые 15-20 мин после действия патогенного фактора, стабилизируется в течение последующих 20 мин, а с 35-40-й мин начинается вторая волна увеличения концентрации белков в ткани, связанная, по-видимому, с нарушением лимфооттока и затруднением транспорта белков из очага воспаления. Нарушение проницаемости сосудистых стенок при воспалении связано с накоплением медиаторов повреждения, а также с расстройством нервной регуляции тонуса сосудов.

Проницаемость сосудистой стенки может повышаться при действии некоторых экзогенных химических веществ (хлор, фосген, дифосген, люизит и др.), бактериальных токсинов (дифтерийный, сибиреязвенный и др.), а также ядов различных насекомых и пресмыкающихся (комары, пчелы, шершни, осы, змеи и др.). Под влиянием воздействия этих агентов, помимо повышения проницаемости сосудистой стенки, происходит нарушение тканевого обмена и образование продуктов, усиливающих набухание коллоидов и повышающих осмотическую концентрацию тканевой жидкости. Возникающие при этом отеки называются токсическими.

К мембраногенным отекам относятся также нейрогенные(вследствие нарушения нервной регуляции сосудистого тонуса, например при нейродистрофических процессах) и аллергическиеотеки (вследствие воздействия медиаторов аллергии при аллергических заболеваниях). Например, велика роль медиаторов (гистамина, комплемента и др.) в развитии различных форм отека Квинке (немецкий врач-терапевт, описавший в 1882 г. острый локальный ангионевротический отек). Различают аллергический и неаллергический (наследственный, связанный с дефицитом ингибиторов протеаз, и в частности ингибитора С1-эстеразы системы комплемента) отеки Квинке. Чаще эти отеки развиваются на лице и в глотке, но могут затрагивать и внутренние органы (пищевод, желудок, кишечник, матку и другие органы и ткани).

Повышение проницаемости сосудистой стенки отмечается также при тромбоцитопениях, ацидозах.

4. Лимфообращение (лимфатический фактор).Затруднение транспорта жидкости и белков по лимфатической системе из интерстициального пространства в общий кровоток создает благоприятные условия для задержки воды в тканях и развития отеков. Так, например, при повышении давления в системе верхней полой вены (недостаточность правого сердца, сужение устья полых вен) возникает мощный прессорный рефлекс на лимфатические сосуды организма, вследствие чего затрудняется отток лимфы из тканей. Такое нарушение лимфообращения называетсямеханической лимфатической недостаточностьюи является одним из важных механизмов развития отека при сердечной недостаточности, а также при циррозе печени. Механическая лимфатическая недостаточность развивается также при закупорке лимфатических сосудов филяриями, при сдавлении лимфатических сосудов опухолью, экссудатом, рубцом, увеличенным соседним органом и др.

При значительном понижении содержания белков в крови (ниже 40 г/л), например, при нефротическом синдроме, линейная и объемная скорости лимфооттока возрастают в несколько раз. Однако, несмотря на это, вследствие чрезвычайно интенсивной фильтрации жидкости из сосудов в ткани лимфатическая система не в состоянии возвращать в общий кровоток столь значительные объемы тканевой жидкости. В связи с перегрузкой транспортных возможностей лимфатических путей возникает так называемая динамическая лимфатическая недостаточность.Этот патогенетический фактор играет важную роль в формировании отеков при нефротическом синдроме.

Существует также резорбционная лимфатическая недостаточность,возникающая при увеличении концентрации белков в ткани, например при воспалении. Молекулы белка удерживают воду в ткани, интенсивность лимфооттока уменьшается, и развивается отек.

В некоторых случаях роль лимфатического фактора в механизме развития отеков настолько непосредственна и велика, что выделяют так называемые лимфатические отеки.Примером может служить слоновость (elephantiasis). Заболевание встречается преимущественно в тропических странах и возникает вследствие механической закупорки лимфатических сосудов круглыми паразитическими червями — филяриями. Развивающаяся при этом механическая лимфатическая недостаточность является ведущим патогенетическим механизмом формирования сильнейшей отечности конечностей (масса одной нижней конечности может достигать 50 кг и более), половых органов и других частей тела (по типу анасарки). Заболевание быстро приводит к инвалидности.

5. Активная задержка электролитов и воды (осмотический фактор).Важным звеном в развитии многих видов отеков (сердечные, почечные, печеночные и др.) является включение механизмов, активно задерживающих электролиты и воду в организме. Регуляцию постоянства электролитного состава жидкостных сред организма и их объема в норме осуществляют антидиуретическая и антинатрийуретическая системы. Раздражение осморецепторов гипоталамуса (при повышении осмотического давления крови) и волюморецепторов предсердий (при снижении объема циркулирующей крови) сопровождается увеличением секреции АДГ гипоталамусом, а также альдостерона надпочечниками. Основным регулятором выработки альдостерона является РААС.

Заключение

Последствия отеков зависят от локализации, продолжительности и выраженности. Очень опасны отек легких, гортани, скопление отечной жидкости в сердечной сорочке, плевральной полости, в полостях головного мозга. Длительное накопление жидкости в тканях нарушает кровообращение, снижается поступление питательных веществ к клеткам, вызывает их сдавливание, нарушается структура и функция поврежденного органа и рядом расположенных, понижается резистентность.

Отек легких приводит к асфиксии, водянка полости перикарда — к тампонаде сердца, асцит нарушает функцию органов брюшной полости.

Иногда отек выполняет защитную функцию. Так, при воспалительных, токсических отеках отечная жидкость уменьшает концентрацию токсических веществ в тканях.

Список используемой литературы

1. Адо А.Д., Адо М.А. и др. Патологическая физиология. Москва: Триада-Х. 2002 — 580 с.

2. Адо А.Д., Новицкий В.В. и др. Патологическая физиология. Томск: 1994 — 428 с.

3. Зайко Н.Н. Патологическая физиология. Москва: Медпрессинформ, 2002 — 646 с.

4. Литвицкий П.Ф. и др. Патофизиология. Москва: «Медицина». 1997 — 750 с.

5. Лютинский С.И. Патологическая физиология сельскохозяйственных животных. Москва: Колос, 2001 — 495 с.

Источник