Активация раас роль отеков
ЦЕНТР ЖАЖДЫ НАХОДИТСЯ В
1) переднем гипоталамусе*
2) почках
3) надпочечниках
Указать номера правильных ответов
ПРИЧИНЫ ГИПОГИДРАТАЦИИ
1) водное голодание*
2) чрезмерная водная нагрузка
3) повышенное содержание в крови АДГ
4) нарушение глотания*
5) полиурия*
Указать номера всех правильных ответов
ПРИЧИНЫ ГИПООСМОЛЯРНОЙ ГИПОГИДРАТАЦИИ
1) питье морской воды
2) уменьшение продукции вазопрессина (АДГ)*
3) осмотический диурез*
4) профузный понос*
5) обильное потоотделение при лихорадке
Указать номера всех правильных ответов
4. ПРИЧИНЫ ГИПООСМОЛЯРНОЙ ГИПЕРГИДРАТАЦИИ
1) увеличение продукции вазопрессина (АДГ)*
2) чрезмерная водная нагрузка*
3) почечная недостаточность*
4) гипопротеинемия
Указать номера всех правильных ответов
ПРИЧИНЫ ГИПЕРОСМОЛЯРНОЙ ГИПЕРГИДРАТАЦИИ
1) активация ренин – ангиотензин – альдостероновой системы (вторичный альдостеронизм)*
2) неадекватно высокая продукция вазопрессина
3) избыточное введение гипертонических растворов*
4) повышенное содержание в крови АДГ
Указать номера всех правильных ответов
БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВАЗОПРЕССИНА (АДГ)
1) сужение артериол и повышение артериального давления*
2) снижение реабсорбции воды в почечных канальцах
3) увеличение реабсорбции воды в почечных канальцах*
Указать номера всех правильных ответов
БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ АЛЬДОСТЕРОНА
1)увеличивает реабсорбцию натрия в дистальных почечных канальцах*
2) повышает реабсорбцию калия в дистальных почечных канальцах
3) повышает секрециию калия в дистальном отделе почечных канальцев*
4) повышает секрецию водорода в почечных канальцах*
Указать номера всех правильных ответов
8. КОМПЕНСАТОРНЫЕ РЕАКЦИИ ОРГАНИЗМА ПРИ ДЕГИДРАТАЦИИ
1) повышение продукции альдостерона*
2) централизация кровообращения*
3)повышение выделения вазопрессина*
4) снижение выделения ренина
5) увеличение суточного диуреза
Указать номера всех правильных ответов
ПРОЯВЛЕНИЯ СИНДРОМА ОБЩЕЙ ГИПЕРГИДРАТАЦИИ
1) отеки*
2) снижение массы тела
3) увеличение объема циркулирующей крови (ОЦК)*
4) понижение артериального давления
5) повышение артериального давления*
6) скопление жидкости в полостях (асцит, гидроторакс)*
Указать номера всех правильных ответов
АКТИВАЦИЯ РЕНИН – АНГИОТЕНЗИН — АЛЬДОСТЕРОНОВОЙ СИСТЕМЫ ИГРАЕТ РОЛЬ В РАЗВИТИИ ОТЕКОВ
1. печеночных
2. сердечных*
3. аллергических
4. нефритических*
5. нефротических*
Указать номера всех правильных ответов
11. ПРОЯВЛЕНИЯ СИНДРОМА ОБЩЕЙ ДЕГИДРАТАЦИИ
1. жажда*
2. повышение артериального давления (АД)
3. повышение вязкости крови*
4. уменьшение суточного диуреза*
5. повышение массы тела
Указать номера всех правильных ответов
12. БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ АНГИОТЕНЗИНА –2
1. стимуляция продукции альдостерона*
2. спазм артериол*
3. понижение тонуса симпатической нервной системы
Указать номера всех правильных ответов
13. ПАТОГЕНЕТИЧЕСКИЕ ФАКТОРЫ РАЗВИТИЯ АСЦИТА ПРИ ЦИРРОЗЕ ПЕЧЕНИ
1. повышение гидростатического давления в системе воротной вены*
2. понижение активности ренин – ангиотензин – альдостероновой системы
3. снижение синтеза белка в печени*
4. уменьшение расщепления альдостерона в печени*
Указать номер правильного ответа
14. ВЕДУЩИЙ ПАТОГЕНЕТИЧЕСКИЙ ФАКТОР РАЗВИТИЯ ОТЕКА ПРИ ВОСПАЛЕНИИ
1. повышение проницаемости сосудистой стенки*
2. снижение синтеза альбуминов в печени
3. повышение эффективного гидростатического давления в венозном конце капилляра
4. повышение осмотического давления крови
Указать номера всех правильных ответов
15. ОСНОВНЫЕ ЗВЕНЬЯ ПАТОГЕНЕЗА ОТЕКОВ ПРИ НЕФРОТИЧЕСКОМ СИНДРОМЕ
1. массивная протеинурия*
2. уменьшение продукции альдостерона
3. уменьшение выделения вазопрессина
4. понижение онкотического давления плазмы крови*
5. повышение проницаемости сосудистой стенки
6. гиповолемия*
Указать номера всех правильных ответов
16. ПАТОГЕНЕТИЧЕСКИЕ ФАКТОРЫ РАЗВИТИЯ ОТЕКА ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ
1. повышение гидростатического давления в венозном отделе капилляров*
2. активация ренин – ангиотензин – альдостероновой системы*
3. снижение минутного объема сердца*
4. снижение выделения почечного ренина
5. гипоонкия крови*
6. гиперосмия крови
Указать номер правильного ответа
17. НАЧАЛЬНОЕ ЗВЕНО ПАТОГЕНЕЗА ОТЕКОВ ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ
1. повышение содержания АДГ в крови
2. повышение секреции ренина в почках
3. уменьшение минутного объема сердца*
4. повышение проницаемости сосудов
5. повышение реабсорбции натрия и воды в почечных канальцах
Указать номера всех правильных ответов
18. ОНКОТИЧЕСКИЙ ФАКТОР — ВЕДУЩИЙ В РАЗВИТИИ ОТЕКОВ ПРИ
1. кахексии* 4. сердечной недостаточности
2. аллергии 5. нефротическом синдроме*
3. воспалении 6. печеночной недостаточности*
Указать номера всех правильных ответов
19. МЕМБРАНОГЕННЫЙ ФАКТОР — ВЕДУЩИЙ В РАЗВИТИИ ОТЕКОВ ПРИ
1. сердечной недостаточности
2. аллергии*
3. печеночной недостаточности
4. воспалении*
5. укусе пчелы*
Указать номера всех правильных ответов
20. ПОСЛЕДСТВИЯ ГИПОГИДРАТАЦИИ
1. сердечная недостаточность*
2. почечная недостаточность*
3. тромбоз*
4. воспаление
5. циркуляторная гипоксия*
6. гемическая гипоксия
Указать номер правильного ответа
21. ВЕДУЩИЙ ФАКТОР РАЗВИТИЯ ЛИМФОГЕННЫХ ОТЕКОВ
1. повышение проницаемости сосудистой стенки
2. снижение онкотического давления плазмы крови
3.активация ренин – ангиотензин — альдостероновой системы
4. нарушение лимфооттока*
Указать номера всех правильных ответов
22. ПРЕДСЕРДНЫЙ НАТРИЙУРИЧЕСКИЙ ГОРМОН (АТРИОПЕПТИН)
1. увеличивает реабсорбцию ионов натрия в почечных канальцах
2. уменьшает реабсорбцию ионов натрия в почечных канальцах *
3. вызывает расширение артериол*
4. вызывает спазм артериол
Указать номер правильного ответа
Источник
Система ренин-ангиотензин-альдостерон
Ренин-ангиотензиновая система (РАС) или ренин-ангиотензин-альдостероновая система (РААС) — это гормональная система человека и млекопитающих, которая регулирует кровяное давление и объём крови в организме.
Компоненты системы[править | править код]
- Ангиотензиноген
- Ангиотензин I
- Ангиотензин II
- Проренин
- Ренин
- Ангиотензинпревращающий фермент
- Альдостерон
Компоненты ренин-ангиотензиновой системы[править | править код]
Ренин-ангиотензин альдестероновый каскад начинается с биосинтеза препроренина на матрице рениновой мРНК в юкстагломерулярных клетках и превращается в проренин путём отщепления 23 аминокислот. В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз. Готовая форма проренина состоит из последовательности включающей 43 остатка присоединённых к N-концу ренина, содержащего 339-341 остаток. Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путём экзоцитоза, но некоторая доля превращается в ренин путём действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин, образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жёстко контролируется давлением, ангиотензином 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объём циркулирующего проренина в десять раз выше концентрации активного ренина в плазме . Однако, все же остаётся не понятным, почему концентрация неактивного предшественника настолько высока.
Контроль секреции ренина[править | править код]
Активная секреция ренина регулируется четырьмя независимыми факторами:
- Почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
- Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl- клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
- Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
- Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки.
Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и в других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.
Контроль секреции ренина — определяющий фактор активности РААС.
Механизм действия ренин-ангиотензиновой системы[править | править код]
Ренин регулирует начальный, ограничивающий скорость, этап РААС путём отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена — печень. Долговременный подъём уровня ангиотензиногена в крови, который происходит во время беременности, при синдроме Иценко-Кушинга или при лечении глюкокортикоидами, может вызвать гипертензию, хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина.
Неактивный декапептид Ang 1 гидролизуется в клетках эндотелия лёгочных капилляров ангиотензинпревращающим ферментом (АПФ), который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 [Ang-(1-8)], биологически активный, мощный вазоконстриктор. АПФ представляет собой экзопептидазу и секретируется главным образом лёгочным и почечным эндотелием, нейроэпителиальными клетками.
Ферментативная активность АПФ заключается в повышении вазоконстрикции и снижении вазодилятации.
Новые данные о компонентах ренин-ангиотензиновой системы[править | править код]
Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путём отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов, например, в мозге и почках. Ang 3 [Ang-(2-8)], гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV [Ang-(3-8)] гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу, вызываемое действием этих ангиотензинов на AT1-рецептор. Причём этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора.
Пептиды, получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом АПФ, названным АПФ2) конкретно на Ang2. В отличие от АПФ, АПФ2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определённые рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. АПФ2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями.
Рецепторы ангиотензина II[править | править код]
Описаны как минимум 4 подтипа рецепторов к ангиотензину.
- Первый тип AT1-R участвует в реализации наибольшего числа установленных физиологических и патофизиологических функций ангиотензина 2. Действие на сердечно-сосудистую систему (вазоконстрикция, повышение давления крови, повышение сократимости сердца, сосудистая и сердечная гипертония), действие на почки (реабсорбция Na+, ингибирование выделения ренина), симпатическую нервную систему, надпочечника (стимуляция синтеза альдостерона). AT1-R рецетор также является посредником во влиянии ангиотензина на клеточный рост, пролиферацию, воспалительные реакции, и оксидативный стресс. Этот рецептор связан с G-белком и содержит семь встроенных в мембрану последовательностей. AT1-R широко представлен во многих типах клеток, являющихся мишенью Ang 2.
- Второй тип AT2-R широко представлен в период эмбрионального развития мозга, почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов. В почках, как предполагается, активация AT2 влияет на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остаётся неизученной.
- Функции третьего типа (AT3) рецепторов не до конца изучены.
- Четвёртый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.
Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.
Влияние на прочие секреции[править | править код]
Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника . Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объёма жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия — наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.
См. также[править | править код]
- Гормоны
- Эндокринная система
- Рениновый рецептор
Ссылки[править | править код]
- Medicus Amicus: Средства, действующих на ренин-ангиотензиновую систему
- ЭНДОТЕЛИЙ СОСУДОВ — ОСНОВНОЙ РЕГУЛЯТОР МЕСТНОГО КРОВОТОКА
C09
Источник
Ренин-ангиотензин-альдостероновая система является комплексом ферментов и гормонов, которые поддерживают гомеостаз. Регулирует равновесие соли и воды в организме и уровень артериального давления.
Механизм работы
Физиология ренин-ангиотензин-альдостероновой системы берет начало на границе коркового и мозгового вещества почки, где имеются юкстагломерулярные клетки, вырабатывающие пептидазу (фермент) — ренин.
Ренин является гормоном и начальным звеном РААС.
Ситуации, при которых ренин выделяется в кровь
Существует несколько состояний, при которых идет попадание гормона в кровеносное русло:
- Уменьшение кровотока в ткани почек — при воспалительных процессах (гломерулонефрит др.), при диабетической нефропатии, опухолях почек.
- Снижение объема циркулирующей крови (при кровотечении, многократной рвоте, поносах, ожогах).
- Падение уровня артериального давления. В артериях почек имеются барорецепторы, которые реагируют на изменение системного давления.
- Изменение концентрации ионов натрия. В организме человека имеются скопления клеток, которые отвечают на изменение ионного состава крови стимуляцией выработки ренина. Соль теряется при обильном потоотделении, а также при рвоте.
- Стрессы, психоэмоциональные нагрузки. Юкстагломерулярный аппарат почки иннервируется симпатическими нервами, которые активируются при негативных психологических влияниях.
В крови ренин встречается с белком — ангиотензиногеном, который вырабатывается клетками печени и забирает у него фрагмент. Образуется ангиотензин I, который является источником воздействия для ангиотензинпревращающего фермента (АПФ). В итоге получается ангиотензин II, который служит вторым звеном и является мощным вазоконстриктором артериальной системы (суживает сосуды).
Эффекты ангиотензина II
Цель: повысить артериальное давление.
- Способствует синтезу альдостерона в клубочковой зоне коры надпочечников.
- Воздействует на центр голода и жажды в головном мозге, вызывая «солевой» аппетит. Поведение человека становится мотивированным на поиск воды и соленой пищи.
- Влияет на симпатические нервы, способствуя высвобождению норадреналина, который тоже является вазоконстриктором, но менее слабым по действию.
- Воздействует на сосуды, вызывая их спазм.
- Участвует в развитии хронической сердечной недостаточности: способствует пролиферации, фиброзу сосудов и миокарда.
- Снижает скорость клубочковой фильтрации.
- Тормозит выработку брадикинина.
Альдостерон — третий компонент, который действует на конечные канальцы почек и способствует выделению из организма ионов калия, магния и обратному всасыванию (реабсорбции) натрия, хлора, воды. Благодаря этому возрастает объем циркулирующей жидкости, поднимаются цифры артериального давления, и усиливается почечный кровоток. Рецепторы к альдостерону имеются не только в почках, но и в сердце, сосудах.
Когда организм достигает гомеостаза, начинают вырабатываться вазодилататоры (вещества, расширяющие сосуды) — брадикинин и каллидин. А компоненты РААС разрушаются в печени.
Схема ренин-ангиотензин-альдостероновой системы
Как любая система, РААС может давать сбой. Патофизиология ренин-ангиотензин-альдостероновой системы проявляет при следующих состояниях:
- Поражение коры надпочечников (инфекция, кровоизлияние и травма). Развивается состояние нехватки альдостерона, и организм начинает терять натрий, хлор и воду, что приводит к уменьшению объема циркулирующей жидкости и снижению артериального давления. Состояние компенсируют введением солевых растворов и стимуляторов рецепторов к альдостерону.
- Опухоль коры надпочечников приводит к избытку альдостерона, который реализует свои эффекты и повышает давление. Также активизируются процессы деления клеток, возникает гипертрофия и фиброз миокарда, и развивается сердечная недостаточность.
- Патология печени, когда нарушается разрушение альдостерона и происходит его накопление. Патология лечится блокаторами рецепторов к альдостерону.
- Стеноз почечной артерии.
- Воспалительные заболевания почек.
Значение РААС для жизни и медицины
Ренин-ангиотензин-альдостероновая система и ее роль в организме:
- принимает активное участие в поддержании нормального показателя артериального давления;
- обеспечивает равновесие воды и солей в организме;
- поддерживает кислотно-основной баланс крови.
Система может давать сбой. Воздействуя на ее компоненты, можно бороться с гипертонической болезнью. Механизм возникновения почечной гипертензии также тесно связан с РААС.
Высокоэффективные группы препаратов, которые синтезированы благодаря изучению РААС
- «Прилы». Ингибиторы (блокаторы) АПФ. Ангиотензин I не переходит в ангиотензин II. Нет вазоконстрикции — нет повышения артериального давления. Препараты: Амприлан, Эналаприл, Каптоприл и др. Ингибиторы АПФ значительно улучшают качество жизни больных сахарным диабетом, обеспечивая профилактику почечной недостаточности. Препараты принимают в минимальной дозировке, которая не вызывает снижения давления, а лишь улучшает местный кровоток и клубочковую фильтрацию. Медикаменты незаменимы при почечной недостаточности, хронической болезни сердца и служат одним из средств лечения гипертонической болезни (если нет противопоказаний).
- «Сартаны». Блокаторы рецепторов к ангиотензину II. Сосуды не реагируют на него и не сокращаются. Препараты: Лозартан, Эпросартан и др.
Противоположной ренин-ангиотензин-альдостероновой системе является кининовая. Поэтому блокирование РААС приводит к повышению в крови компонентов кининовой системы (брадикинин и др.), что благоприятно влияет на ткани сердца и стенки сосудов. Миокард не испытывает голодания, потому как брадикинин усиливает местный кровоток, стимулирует выработку естественных вазодилататоров в клетках мозгового вещества почек и микроцитах собирательных трубочек — простагландинов Е и И2. Они нейтрализуют прессорное действие ангиотензина II. Сосуды не спазмированы, что обеспечивает адекватное кровоснабжение органов и тканей организма, кровь не задерживается и снижается формирование атеросклеротических бляшек и тромбов. Кинины благоприятно воздействуют на почки, увеличивают диурез (суточное выделение мочи).
Источник